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Computing with excitable systems in a noisy environment
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In this work we show that excitable units with biologically inspired couplings are capable of performing any
logic operation in a noisy environment without synchronization.
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The brain is the most sophisticated information proce
ing device that we know of. Neurons process analogic in
mation that enters through the sensory system, transform
it into a sequence of pulses~action potentials! in order to
relay it to other neurons. This is a dynamic process in wh
the time course is important~it is believed that, in certain
cases, the information is encoded in the frequency of
signals@1#!. Furthermore, it occurs in a noisy environme
and in the absence of an external synchronizing clock@2#. It
is not clear that the brain operates as a computer, yet
metaphor has proven to be useful~e.g., neural networks@3#
and biologically inspired circuits@4#!. Thus, the following
question arises:How can computations be performed out
an analogic input, without synchrony and in a noisy enviro
ment? Using a biologically inspired synthetic model, w
prove in this work that computability with neuronlike uni
in a noisy environment is possible, without external synch
nization.

In a seminal work, McCulloch and Pitts showed that
synthetic neuron model could perform all the logic ope
tions that an electronic computer does@5#. This approach
requires an absolute coordination of the signals and a no
free environment. In order to overcome some of these sh
comings, continuous time models have been develope
which the relevant variable is the average firing rate of
neurons~see, e.g.,@1#!. Neural networks built with chemica
reactions in which the state of the units is represented
stationary states are similar to these average rate mode
particular, the program of showing computability with the
networks has been successfully carried out by Ross and
workers@6–8#. On the other hand, in the last few years, t
extent to which average rate models are accurate repres
tions of information coding in real neurons has been deba
arguing that there is information contained in the sequenc
spikes that is not captured by these averages@2,9#. To ac-
count for the richness of coding possibilities of spike trai
it is appropriate to work with continuous time models th
are able to represent the actual spiking behavior, i.e.,
describe in more detail the time course of the membr
potential @10,11#. These excitable units, coupled with bio
logically inspired connections, should be able to perfo
small frame averages in a dynamical way. This is the
proach we follow in the present work.
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We present a synthetic model that includes~some of! the
processes involved in the transmission of information in n
rons in a dynamic way~i.e., the competition between th
various processes selects the time scales that are releva
the information processing and transmission!. It is important
to point out that noise produces intriguing effects in the d
namics of nonlinear systems, such as the introduction of n
time scales@12#. This is particularly true in excitable system
@13–15#, such as neurons. In spite of this, we do prove co
putability in our noisy model. In order to do so, we show th
logic gates can be built in this way and that global cons
tency @16# is satisfied for an arbitrary long logic circuit, de
pending on the properties of the coupling.

We now introduce the model. We start with the simple
but yet, generic model displaying a noisy excitable dyna
ics. Its evolution is given by

du/dt5m02cos~u!1j~ t !, ~1!

whereu is an angular variable (2p,u<p) andj(t) is ~for
simplicity! Gaussian white noise@^j&50, ^j(t)j(t1t)&
52Dd(t)#. In the absence of noise (j50), this system is
excitable form0,1 and presents oscillations form0.1. We
associate the firing of an action potential with a compl
turn in u andu to a dimensionless membrane potential at
soma. This equation is known as Adler’s equation and als
VCON ~voltage controlled oscillator neuron! @17#. It dy-
namically contains, in a pure way, the saddle node bifur
tion within a limit cycle~Andronov bifurcation!. Not only it
can model excitable dynamics, but it is also known to b
canonical model, i.e., any other system at this bifurcation
be transformed to the VCON by an appropriate change
variables. All neuron models presenting what is known
class I excitability display this type of bifurcation. For eac
of these models it is possible to relatem0 to their original
parameters. An example of this transformation for t
Wilson-Cowan neural model can be found in@17#. Since we
work with m0'1, the potential at rest isu'0 and the action
potential corresponds tou'p. In the excitable regime (m0
,1), the presence of noise can trigger spontaneous firi
The interspike time distribution of this dynamics is wide.
presents a maximum@13# and an exponential tail@18#. Be-
yond m051, the noise slightly widens the otherwise peak
interspike time distribution~see Fig. 1!. The qualitative dif-
ference between these two distributions may be used to
fine a binary code.

Our logic gate consists of an excitable cell, coupled
other excitable cells operating at the excitable or oscillat
d-
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BRIEF REPORTS PHYSICAL REVIEW E 65 047201
regimes. Therefore, the equation ruling the dynamics of
gate is similar to Eq.~1!, with extra terms accounting for th
couplings. In order to couple the excitable units, we dr
inspiration from the synaptic connections among neurons
most cases, these connections are mediated by the relea
neurotransmitters, which, in turn, open ionic channels a
change the dendritic potential of the postsynaptic neuron
this point, the neuron adds spatially and temporally the
puts to a value that is passively conveyed to the soma, w
eventually the action potential is fired. The variables nee
to describe a simple model with these features are the de
of neurotransmitters in the cleft,n, the dendritic potentialz,
and the density of open neurotransmitter-gated channels,No ,
all of which we take to be dimensionless. We assume
two neurotransmitter moleculesA are needed to open on
channel, and that each channel can exist in two states: o
O and closedC. The simplest model for this process is give
by the reaction step

2A1C

k8

k

O.

Assuming that the total density of channels isN and that the
reaction occurs fast enough so that it relaxes on a short
scale towards its local equilibrium, then the density of op
channels,No may be related to the total density of channe
N, and the density of neurotransmitters in the cleft,n, by
No5@n2/(n21kd)#N, where kd[k8/k is the dissociation
constant. This dynamics has a similar effect to that of
enzyme reactions included in the chemical networks p
sented in@6–8#. Neurotransmitters are released into the s

FIG. 1. Schematic diagram of~a! the OR gate. The logical state
of the input cells@Eq. ~2!# is given by the ‘‘effective parameter’
m5m01gz. A lower m value corresponds to a wide interspike h
togram and is associated with a false input.P(T) is the probability
density of the interspike time intervalT. A higher m value corre-
sponds to a narrow interspike histogram and a true input.~b! The
NOT gate. A false input gives a true output. All variables are dim
sionless.
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aptic cleft whenever an action potential occurs at the pres
aptic neurons, and removed by enzymes, reuptake,
diffusion. Taking into account that the distribution of ne
rotransmitters reaches a rapid equilibrium with the chann
a minimal model forn can be written as

dn/dt5
1

l (
i 51

l

Q~u i !2an, ~2!

where u i corresponds to the potentials of the presynap
neurons~labeled byi ), the sum runs over all the presynapt
inputs, a is the rate of neurotransmitter removal, an
Q(u i)5u i in the neighborhood ofu i5p and zero otherwise
Therefore, the term (1/l )( i 51

l Q(u i) acts as a source o
neurotransmitters that is turned on whenever any of the
synaptic neurons spikes. Finally we need to model the
namical behavior of the dendritic potential of the excitab
cell acting as the gate,z. This potential changes due to~1! a
gain term associated to the ionic currents that flow throu
the neurotransmitter-gated channels and~2! a loss term due
to a leak current and to the opening of some voltage ga
channels. In its simplest form, this can be written as

dz/dt5
n2

n21kd
K2bz, ~3!

where the constantK is positive ~negative! for excitatory
~inhibitory! synapses and involves both the total number
channels and the equilibrium potential of the ions that fl
through these channels. In writing this we have assumed
z can be neglected in front of this equilibrium potential a
thatz50 at rest. We have also assumedb to be constant for
the values over whichz varies. While we identify the inputs
of the gate with the potentials at the soma of the presyna
neurons, we identify the output of the gate with the poten
of the soma of the postsynaptic neuron.

In order to couple the dynamics of the dendritic potent
z, to that of the potential at the soma of the postsynaptic g
u, we write, instead of Eq.~1!,

du/dt5m01gz2cos~u!1j~ t !, ~4!

where the termgz represents the passive spreading of
potential from the dendrites into the soma. Notice that
effect of this term is to ‘‘rescale’’ the parameterm0. Namely,
Eq. ~4! is equivalent to Eq.~1! but with m0 replaced bym0
1gz. Therefore, by changing the inputgz, it is possible to
change the behavior of the neuron from excitable to osci
tory and vice versa, and therefore, to change the output of
gate. We associate the ‘‘effective parameter’’m5m01gz to
the logic state of the neuron~the output of the gate!.

We associate the two possible logic states~‘‘true’’ and
‘‘false’’ ! to two regions in them parameter space. A true sta
corresponds tom.mT and a false one tom,mF . The values
of mT andmF are such that for mostm.mT the neuron is in
the oscillatory regime, while it is in the excitable one for a
m,mF . They are chosen, as we will explain, so as to gu
antee the correct operation of the gate, even if many of th
are sequentially nested~global consistency!.
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BRIEF REPORTS PHYSICAL REVIEW E 65 047201
We now show how to build anOR gate. Its operation is
defined by Eqs.~2!–~4!, with l 52 ~i.e., two inputs!. Equa-
tion ~2! integrates the spikes of the inputs, reaching
asymptotic value that is roughly proportional to the sum
the average spiking rates of both inputs. Therefore, the d
sity of neurotransmitters,n, approaches different mean va
ues depending on the input types. However, since the f
tion of open channels,Fo[n2/(n21kd), is a nonlinear
saturating function ofn, the asymptotic dendritic potentialz,
which is given byFoK/b, may approach similar values fo
different sets of inputs, depending on the value ofkd . We
choosekd in such a way that almost all true-true and tru
false inputs originate similar asymptotic values ofz(zTF
'zTT), which are in turn different from the values that th
false-false inputs generate,zFF . An example of this is shown
in Fig. 2, in which the false~true! input corresponds to an
evolution in the excitable~oscillatory! regime. In general, if
the duration of each action potential,t, at the input neurons
is much smaller than the interspike time of the combin
inputs, T, we may estimate the asymptotic value ofn as n
→^Q&t exp(aT)/@exp(aT)21#, where^Q&t is the concentra-
tion of neurotransmitter released due to one external impu
If aTFF@1 while aTTF!1, then nFF'^Q&t and nTF
'^Q&t/aTTF . Thus, given the form ofFo , a necessary con
dition for zTF and zTT to differ by less than 10%, and b
different from zFF is 3aTTF,^Q&t/Akd<1. This states a
limit to global consistency in terms of the reaction rates
the channels dynamics. In real neurons several inputs a
at each terminal and as many as 800 presynaptic poten
per second may be added to produce a postsynaptic pote
@19#. Typical neurotransmitter removal occurs on very sh
time scales~on the order of some milliseconds@20#!. Esti-
matinga;0.1 ms21 andTTF;1 ms, the above-mentione
constraint reads 0.3,^Q&t/Akd<1, which is satisfied pro-
vided that the fraction of channels that open in respons
one input spike is between 0.08 and 0.5.

Now we need to define the false and true regions. Thi
done by simultaneously adjusting the paramet
m0 , g, mF , andmT in such a way thatm01gzFF,mF for
all zFF values generated with inputsm1 ,m2,mF , and m0

FIG. 2. Time evolution of thez variable of theOR gate ruled by
Eqs. ~2!–~4! with a50.01, b51024, K51025, and kd50.233
and three different inputs: false-false, true-false, and true-true.
variables are dimensionless.
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1gzTF.mT for all zTF values generated with inputsm1
.mT and m2,mF . It is possible to do this because of th
saturation effects that the couplings introduce, as we
plained before. These requirements guarantee the global
sistency for an arbitrarily long chain of logic gates. We illu
trate this in Fig. 3, where we plot the logical state of the ga
m5m01gz, as a function of the logical state of the input
m1 ,m2 as an example of satisfying these requirements. Th
we see that any input in the false-false region~regionA) is
mapped into the false region, i.e.,m(m1 ,m2),mF , and that
any input in the true-false or true-true region~region B! is
mapped into the true region, i.e.,m(m1 ,m2).mT . In this
way, the output of the gate can be used as an input of ano
one and an arbitrarily long chain of logic gates can be imp
mented. This is equivalent to the following requirements:~a!
in any chain ofOR gates, the output is true if at least one
the cells is true;~b! in any chain ofOR gates with only false
inputs, the output is always false.

In order to implement all the logic operations we al
need a gate that performs an inversion of the input. This
be achieved through aNOT gate, which is described by Eqs

ll

FIG. 3. The effective parameterm5m01gz of the OR gate
given by Eqs.~2!–~4! with m050.949 05 andg50.471 01, as a
function of the parameter values of the inputs,m1 ,m2. We define
two regions:A for both inputsm i,mF50.96, andB for at least one
true inputm i.mT50.98. Any input inA produces an output in the
false region,m,mF , and any input inB is mapped into the true
region,m.mT . All variables are dimensionless.

FIG. 4. The effective parameterm (n11) of theNOT gate given by
Eqs.~2!–~4! as a function of the parameter value of the inputm (n).
The false region (m,mF50.96) is mapped into the true regio
(m.mT50.98) and vice versa. All variables are dimensionless.
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BRIEF REPORTS PHYSICAL REVIEW E 65 047201
~2!–~4!, with l 51 ~i.e., a unary operator!. We used the same
parameter values for Eqs.~2! and ~3! as in theOR gate, but
now the coupling is inhibitory (K521025). Therefore, a
false input corresponds to a minimum negative asympt
value of z and a true input to a negativez value of small
absolute value. Since the difference between th
asymptoticz values is similar to that of theOR gate (zTF
2zFF), we can use the same value for the coupling para
eter g50.471 01. TheNOT gate acts as a one-dimension
map in parameter spacem, mapping the logical state of a
excitable unit,m (n), to the next onem (n11). In order to
achieve global consistency we require thatMF ~defined with
the samemF as for theOR gate! be mapped intoMT and vice
versa for an arbitrarily long chain of excitable units. In oth
g
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words, we require that both regions are invariant after t
iterations of the map. This can be done by a suitable cho
of the parameterm050.994 81. In Fig. 4 we show a plot o
theNOT gate acting as a map on the logical state space of
excitable units,m.

In this way we show that excitable units with biological
inspired couplings are capable of performing any logic o
eration in a noisy environment without synchronization.
go beyond logic gates towards computability, it is necess
to implement memory devices. A natural direction for furth
work is to explore the construction of such units with o
elements.

This work was funded by CONICET, UBA, and Fund
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